organic compounds

Mo $K\alpha$ radiation

 $0.60 \times 0.20 \times 0.15 \text{ mm}$

25415 measured reflections

3968 independent reflections

2957 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.11 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.072$

329 parameters

 $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.38~{\rm e}~{\rm \AA}^{-3}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Butylquinine tetrafluoroborate

Sana Eltaief,^a Pascal Retailleau,^b Leo Straver^c and Béchir Ben Hassine^a*

^aLaboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (01UR1201), Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, Tunisia, ^bInstitut de Chimie des Substances Naturelles-CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France, and ^cChopinrode 8, 2717 BK Zoetermeer, The Netherlands

Correspondence e-mail: bechirbenhassine@yahoo.fr

Received 9 December 2009; accepted 21 December 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.063; wR factor = 0.156; data-toparameter ratio = 12.1.

In the title salt (2S,4S,8R)-1-butyl-2-[(R)-(hydroxy)(6methoxyquinolin-4-yl)methyl]-8-vinylquinuclidin-1-ium tetrafluoroborate, $C_{24}H_{33}N_2O_2^+ \cdot BF_4^-$, the butyl substituent at the 1-position is in an equatorial conformation with respect to the unsubstituted six-membered ring and the four butyl C atoms are almost coplanar with the ring N and vinyl C atoms (r.m.s. deviation = 0.046 Å). In the crystal, the cations are linked by O-H···N hydrogen bonds. The F atoms of the tetrafluoroborate group are disordered over two sets of site with an occupancy raitio of 0.552 (8):0.448 (8).

Related literature

For the crystal structures of similar 1-butylquinine tetrafluoroborate derivatives, see: Dijkstra et al. (1989); Samas et al. (2005). For applications of quinine salts, see: Thierry et al. (2001, 2003). For graph-set notation, see: Bernstein et al. (1994). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data $C_{24}H_{33}N_2O_2^+ \cdot BF_4^ M_r = 468.33$

Orthorhombic, P2₁2₁2₁ a = 8.041 (8) Å

b = 12.597 (12) Åc = 22.91 (2) Å V = 2321 (4) Å³ Z = 4

Data collection

Bruker Kappa-APEX DUO diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.885, T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.156$ S = 1.063968 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1-H1O\cdots N2^i$	0.84	1.95	2.787 (4)	174
Symmetry code: (i) x	$-\frac{1}{2}, -y + \frac{1}{2}, -z$			

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CrystalBuilder (Welter, 2006); molecular graphics: PLATON (Spek, 2009) and Mercury (Bruno et al., 2004); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors thank the DGRSRT (Direction Générale de la Recherche Scientifique et de la Rénovation Technologique) of the Tunisian Ministry of Higher Education and Scientific Research and Technology for financial support of this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2256).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431-507. New York: VCH.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.

Dijkstra, G. D. H., Kellogg, R. M., Wynberg, H., Svendsen, J. S., Marko, I. & Sharpless, K. B. (1989). J. Am. Chem. Soc. 111, 8069-8076.

- Samas, B., Blackburn, A. C. & Kreuchauf, K. C. (2005). Acta Cryst. E61, 03983-03984
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thierry, B., Plaquevent, J.-C. & Cahard, D. (2001). Tetrahedron Asymmetry, 12, 983-986
- Thierry, B., Plaquevent, J.-C. & Cahard, D. (2003). Tetrahedron Asymmetry, 14, 1671-1677.
- Welter, R. (2006). Acta Cryst. A62, s252.
- Westrip, S. P. (2010). publCIF. In preparation.

Acta Cryst. (2010). E66, o281 [doi:10.1107/S1600536809054907]

1-Butylquinine tetrafluoroborate

S. Eltaief, P. Retailleau, L. Straver and B. Ben Hassine

Comment

The overall utility of asymmetric catalysts can be compared by examining three main criteria: 1) the variety of reactions that the catalyst can promote, 2) the availability of both enantiomeric antipodes of the catalyst at a reasonable price, and 3) the stability of the catalyst. Alkaloids and quaternary ammonium salt fulfill all of these criteria. They make them one of the most useful catalysts to date. Alkaloids can be transformed to quaternary ammonium salt in one or two steps. Chiral 1-butylquinine cation was reacted with BF_4^- leading to a new salt. The latter could serve as a chiral catalyst for different asymmetric reactions.

The X-ray structure shows that the boron atom presents statistically two types of tetrahedral environments: E1 and E2 with occupancy rates of 55.2% and 44.8%, respectively. The first environment (E1), which consists of F1A, F2A, F3A and F4, is strongly distorted as indicated by the B—F bond lengths varying from 1.324 (5) and 1.468 (5) Å and F—B—F scattering from 99.9 (8) and 123.3 (8)°. The second environment (E2), which consists of F1B, F2B, F3B and F4, is also very distorted as revealed by the B—F distance ranging from 1.298 (5) and 1.437 (5) Å and the F—B—F angles included between 95.5 (7) and 120.3 (8)°.

Regarding the cation, the quinine skeleton displays atomic parameters, which are comparable to those of the forty-two derivatives already deposited at the Cambridge Structural Database (Version 5.30, September 2009 update), Allen, 2002, *Mogul*, Version 1.1.3; Bruno *et al.*, 2004). It commonly adopts the open conformation III described in solution by Dijk-stra *et al.*,1989, and in which the butyl-substituted quinuclidine nitrogen, N1, turns away from the quinoline ring and is oriented in the same direction as the methoxy oxygen. The torsion angles, which best characterized the overall shape, C12-C11-C10-O1 and, O1-C10-C1-C2, are -22.6 (4)° and 45.8 (3)°, respectively. The butyl substituent at N1 is in equatorial conformation with respect to the six-membered ring C3/C7-N1 and the four butyl atoms are almost coplanar with N1-C20/C23 (r.m.s. deviation of 0.046 Å), and parallel to the [001] direction.

In the crystal structure, molecules are mainly linked by intermolecular O—H···N hydrogen bonds into helical chains running along a crystallographic 2_1 axis at y=1/4 position in the *a*-axis direction with graph-set notation C(7) (Bernstein *et al.* (1994). The stability of the chains also benefits from the tilted superimposition of adjacent quinolin moieties with dihedral angle of 36.2 (4)° and shortest centroid distance of 4.162 (5) Å.

Experimental

Quinine and 1-bromobutane (1.1 equiv) were dissolved in acetonitrile and refluxed overnight. The reaction mixture was concentrated and 1-butylquinine bromide was purified to 95% being washed with ethyl acetate. The desired 1-Butylquinine tetrafluoroborate,[BQ]BF4, was then produced by anion exchange with NaBF₄ (1.2 equiv) in biphasic CH₂Cl₂/H₂O mixture. The reaction mixture was stirred for a further 24 h. The mixture was then extracted with CH₂Cl₂ and the organic phase

was dried over MgSO₄. The solvent evaporation method was used to grow [BQ]BF₄ crystals in dichloromethane at room temperature. The product is a colorless single-crystal which is air stable (m.p.197-199 °C).

Refinement

All H atoms attached to C or O atoms were placed in calculated positions (C—H = 0.95–1.00 Å; O—H = 0.84 Å (hydroxyl)) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic or vinyl})$ or $U_{iso}(H) = 1.5U_{eq}(C_{others}, O)$. 3007 Friedel opposites were merged

Figures

Fig. 1. An *ORTEP* diagram drawing of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2. Molecular packing of the title compound as viewed along the *a* axis.

(2S, 4S, 8R) - 1 - butyl - 2 - [(R) - (hydroxy)(6 - methoxyquinolin - 4 - yl)methyl] - 8 - vinylquinuclidin - 1 - ium tetrafluoroborate

Crystal data

$C_{24}H_{33}N_2O_2^+ \cdot BF_4^-$	$D_{\rm x} = 1.340 {\rm ~Mg~m}^{-3}$
$M_r = 468.33$	Melting point: 198 K
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 312 reflections
a = 8.041 (8) Å	$\theta = 2.4 - 23.5^{\circ}$
b = 12.597 (12) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 22.91 (2) Å	T = 120 K
$V = 2321 (4) \text{ Å}^3$	Block, colourless
Z = 4	$0.60 \times 0.20 \times 0.15 \text{ mm}$
F(000) = 992	

Data collection

Bruker Kappa-APEX DUO diffractometer

3968 independent reflections

Radiation source: sealed tube	2957 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.072$
Detector resolution: 8.3333 pixels mm ⁻¹	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
ϕ and ω scans	$h = -6 \rightarrow 11$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$k = -17 \rightarrow 17$
$T_{\min} = 0.885, T_{\max} = 0.982$	<i>l</i> = −32→32
25415 measured reflections	
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.156$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 2.384P]$ where $P = (F_o^2 + 2F_c^2)/3$
3968 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

3968 reflections329 parameters

0 restraints

0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.36 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Ennelland		1:					· · · · · · · · · · · · · · · · · · ·				182	١
Fractional	atomic	coorainales	ana	isoiropi	c or e	quivaieni	isotro	pic ais	placement	parameters	(A)	J

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C23	0.6730 (6)	0.0069 (3)	0.38114 (15)	0.0356 (10)	
H23A	0.6159	-0.0618	0.3825	0.053*	
H23B	0.6274	0.0537	0.4113	0.053*	
H23C	0.7922	-0.0037	0.3880	0.053*	
01	0.4684 (3)	0.02693 (17)	0.06488 (9)	0.0199 (5)	
H1O	0.3809	0.0582	0.0546	0.030*	
O2	0.7800 (4)	0.42741 (19)	0.21386 (10)	0.0322 (7)	
C9	1.1983 (7)	-0.2286 (4)	0.0729 (2)	0.0533 (13)	
H9A	1.1473	-0.2966	0.0725	0.064*	

H9B	1.3072	-0.2197	0.0577	0.064*
C22	0.6473 (6)	0.0576 (3)	0.32091 (13)	0.0287 (8)
H22A	0.5272	0.0701	0.3143	0.034*
H22B	0.7048	0.1271	0.3195	0.034*
N2	0.6884 (4)	0.3676 (2)	-0.02267 (11)	0.0217 (6)
C10	0.5780 (4)	0.1006 (2)	0.09150 (12)	0.0158 (6)
H10	0.5270	0.1271	0.1285	0.019*
N1	0.7366 (4)	-0.0274 (2)	0.16071 (10)	0.0166 (5)
C24	0.7511 (5)	0.3433 (3)	0.25445 (13)	0.0256 (8)
H24A	0.6405	0.3129	0.2477	0.038*
H24B	0.7573	0.3711	0.2943	0.038*
H24C	0.8357	0.2881	0.2492	0.038*
C17	0.7533 (5)	0.4053 (2)	0.15683 (14)	0.0228 (7)
C16	0.6980 (5)	0.3092 (2)	0.13639 (13)	0.0189 (6)
H16	0.6765	0.2531	0.1631	0.023*
C15	0.6724 (4)	0.2928 (2)	0.07579 (12)	0.0162 (6)
C11	0.6174 (4)	0.1949 (2)	0.05190 (12)	0.0167 (6)
C1	0.7426 (4)	0.0434 (2)	0.10566 (11)	0.0153 (6)
H1	0.8281	0.0995	0.1129	0.018*
C2	0.8059 (5)	-0.0253 (3)	0.05386 (13)	0.0205 (7)
H2A	0.7304	-0.0168	0.0201	0.025*
H2B	0.9181	-0.0012	0.0420	0.025*
C3	0.8128 (5)	-0.1425 (2)	0.07171 (14)	0.0220 (7)
H3	0.8413	-0.1873	0.0371	0.026*
C6	0.9446 (4)	-0.1570 (2)	0.11938 (13)	0.0198 (7)
Н6	0.9325	-0.2300	0.1359	0.024*
C8	1.1178 (5)	-0.1465 (3)	0.09467 (14)	0.0263 (8)
H8	1.1703	-0.0789	0.0948	0.032*
C21	0.7152 (5)	-0.0141 (3)	0.27310 (13)	0.0249 (8)
H21A	0.6534	-0.0821	0.2728	0.030*
H21B	0.8339	-0.0298	0.2807	0.030*
C20	0.6969 (5)	0.0408 (2)	0.21390 (12)	0.0200(7)
H20A	0.5811	0.0667	0.2102	0.024*
H20B	0.7708	0.1037	0.2134	0.024*
C18	0.7836 (5)	0.4904 (3)	0.11797 (16)	0.0280 (8)
H18	0.8210	0.5568	0.1325	0.034*
C19	0.7590 (5)	0.4769 (2)	0.05954 (15)	0.0236 (7)
H19	0.7789	0.5344	0.0337	0.028*
C14	0.7041 (4)	0.3780 (2)	0.03679 (13)	0.0186 (6)
C13	0.6389 (5)	0.2759 (3)	-0.04317 (13)	0.0221 (7)
H13	0.6283	0.2685	-0.0843	0.027*
C12	0.6002 (4)	0.1872 (3)	-0.00788(12)	0.0195 (7)
H12	0.5627	0.1229	-0.0252	0.023*
C4	0.6443 (5)	-0.1761(3)	0.09637 (16)	0.0286 (8)
H4A	0.6440	-0.2535	0.1039	0.034*
H4B	0.5555	-0.1602	0.0678	0.034*
C5	0.6115 (5)	-0.1157 (3)	0.15346 (14)	0.0231 (7)
H5A	0.4977	-0.0857	0.1529	0.028*
H5B	0.6195	-0.1652	0.1869	0.028*

C7	0.9085 (4)	-0.0766 (2)	0.16817 (13)	0.0183 (6)	
H7A	0.9148	-0.1127	0.2065	0.022*	
H7B	0.9938	-0.0200	0.1675	0.022*	
B1	0.2102 (6)	0.1749 (3)	0.21354 (18)	0.0298 (10)	
F4	0.2425 (5)	0.0825 (2)	0.18461 (12)	0.0708 (11)	
F1A	0.3521 (8)	0.2072 (5)	0.2369 (4)	0.078 (3)	0.552 (8)
F2A	0.1287 (7)	0.2640 (4)	0.18703 (19)	0.0410 (15)	0.552 (8)
F3A	0.0935 (13)	0.1528 (5)	0.2613 (3)	0.085 (3)	0.552 (8)
F1B	0.3276 (11)	0.2428 (5)	0.1845 (4)	0.066 (3)	0.448 (8)
F2B	0.0631 (9)	0.1900 (7)	0.1900 (3)	0.056 (3)	0.448 (8)
F3B	0.2247 (13)	0.1795 (5)	0.2699 (3)	0.049 (2)	0.448 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C23	0.045 (3)	0.045 (2)	0.0171 (15)	-0.006 (2)	0.0005 (16)	0.0078 (14)
01	0.0225 (14)	0.0132 (10)	0.0241 (11)	-0.0040 (10)	-0.0072 (10)	0.0040 (8)
02	0.0489 (19)	0.0218 (12)	0.0258 (12)	-0.0070 (12)	-0.0034 (12)	-0.0064 (9)
C9	0.034 (3)	0.069 (3)	0.058 (3)	0.004 (3)	0.003 (2)	-0.028 (3)
C22	0.039 (2)	0.0311 (18)	0.0162 (14)	0.0057 (17)	0.0041 (14)	0.0043 (12)
N2	0.0248 (17)	0.0199 (13)	0.0202 (12)	0.0009 (12)	0.0044 (11)	0.0079 (10)
C10	0.0197 (18)	0.0124 (13)	0.0151 (12)	-0.0009 (12)	0.0003 (12)	0.0043 (10)
N1	0.0216 (16)	0.0138 (11)	0.0144 (11)	0.0030 (11)	0.0001 (10)	0.0030 (9)
C24	0.027 (2)	0.0300 (18)	0.0200 (14)	-0.0028 (15)	-0.0006 (14)	-0.0055 (12)
C17	0.029 (2)	0.0153 (14)	0.0237 (15)	0.0020 (14)	0.0013 (14)	-0.0024 (11)
C16	0.0259 (19)	0.0134 (13)	0.0175 (13)	0.0022 (13)	-0.0005 (12)	0.0025 (10)
C15	0.0202 (18)	0.0123 (13)	0.0159 (13)	0.0011 (12)	0.0007 (12)	0.0029 (10)
C11	0.0194 (18)	0.0142 (14)	0.0166 (13)	0.0017 (13)	0.0007 (12)	0.0032 (10)
C1	0.0217 (18)	0.0132 (13)	0.0111 (11)	-0.0020 (12)	0.0001 (11)	0.0037 (9)
C2	0.0266 (19)	0.0202 (14)	0.0148 (13)	0.0042 (14)	0.0012 (12)	-0.0007 (11)
C3	0.027 (2)	0.0144 (14)	0.0244 (15)	-0.0011 (14)	-0.0011 (14)	-0.0042 (11)
C6	0.0255 (19)	0.0110 (13)	0.0228 (14)	0.0019 (12)	0.0020 (14)	-0.0001 (11)
C8	0.028 (2)	0.0289 (17)	0.0221 (15)	-0.0003 (16)	-0.0015 (14)	-0.0016 (13)
C21	0.035 (2)	0.0229 (16)	0.0172 (14)	0.0070 (15)	-0.0005 (14)	0.0069 (11)
C20	0.0296 (19)	0.0160 (14)	0.0144 (12)	0.0069 (13)	0.0020 (13)	0.0019 (10)
C18	0.037 (2)	0.0119 (14)	0.0348 (18)	-0.0024 (14)	0.0053 (17)	-0.0017 (12)
C19	0.028 (2)	0.0117 (14)	0.0311 (16)	-0.0004 (14)	0.0078 (15)	0.0041 (11)
C14	0.0201 (18)	0.0139 (13)	0.0218 (14)	0.0017 (13)	0.0041 (12)	0.0053 (10)
C13	0.025 (2)	0.0260 (16)	0.0153 (13)	-0.0010 (14)	0.0009 (13)	0.0078 (12)
C12	0.0227 (19)	0.0191 (14)	0.0167 (13)	-0.0005 (13)	-0.0007 (12)	0.0022 (11)
C4	0.031 (2)	0.0164 (15)	0.0379 (19)	-0.0060 (14)	-0.0064 (16)	-0.0028 (13)
C5	0.027 (2)	0.0158 (14)	0.0269 (15)	-0.0038 (14)	-0.0017 (14)	0.0062 (12)
C7	0.0183 (18)	0.0165 (14)	0.0201 (14)	0.0031 (13)	-0.0019 (12)	0.0018 (11)
B1	0.041 (3)	0.0181 (17)	0.0301 (19)	-0.0058 (18)	-0.0086 (19)	0.0032 (14)
F4	0.108 (3)	0.0438 (15)	0.0606 (17)	-0.0434 (18)	0.0418 (18)	-0.0335 (13)
F1A	0.046 (4)	0.046 (3)	0.142 (8)	0.018 (3)	-0.054 (5)	-0.054 (5)
F2A	0.059 (4)	0.025 (2)	0.039 (2)	0.007 (2)	-0.009 (2)	0.0031 (17)
F3A	0.120 (8)	0.058 (4)	0.077 (5)	0.052 (5)	0.068 (5)	0.036 (3)

F1B	0.069 (6)	0.022 (3)	0.106 (7)	-0.026 (3)	0.051 (5)	-0.020 (3)
F2B	0.037 (4)	0.084 (7)	0.046 (3)	0.027 (4)	-0.006(3)	-0.008(4)
F3B	0.077 (7)	0.043 (3)	0.026 (3)	0.014 (4)	-0.013 (3)	-0.015 (2)
Geometric param	neters (Å, °)					
C23—C22		1.535 (5)	(C1—C2	1	.555 (4)
С23—Н23А		0.9800	(С1—Н1	1	.0000
С23—Н23В		0.9800	(С2—С3	1	.533 (5)
С23—Н23С		0.9800	(С2—Н2А	0	.9900
O1—C10		1.417 (4)	(С2—Н2В	0	.9900
01—H10		0.8400	(С3—С4	1	.528 (6)
O2—C17		1.353 (4)	(С3—С6	1	.533 (5)
O2—C24		1.429 (4)	(С3—Н3	1	.0000
С9—С8		1.317 (6)	(С6—С8	1	.509 (5)
С9—Н9А		0.9500	(С6—С7	1	.536 (4)
С9—Н9В		0.9500	(С6—Н6	1	.0000
C22—C21		1.522 (5)	(С8—Н8	0	.9500
C22—H22A		0.9900	(C21—C20	1	.530 (4)
C22—H22B		0.9900	(C21—H21A	0	.9900
N2-C13		1.310 (5)	(C21—H21B	0	.9900
N2-C14		1.374 (4)	(C20—H20A	0	.9900
C10-C11		1.528 (4)	(C20—H20B	0	.9900
C10-C1		1.541 (5)	(C18—C19	1	.364 (5)
C10—H10		1.0000	(C18—H18	0	.9500
N1—C5		1.509 (4)	(C19—C14	1	.421 (5)
N1—C7		1.524 (4)	(С19—Н19	0	.9500
N1-C20		1.525 (4)	(C13—C12	1	.414 (4)
N1—C1		1.545 (4)	(С13—Н13	0	.9500
C24—H24A		0.9800	(С12—Н12	0	.9500
C24—H24B		0.9800	(C4—C5	1	.536 (5)
C24—H24C		0.9800	(C4—H4A	0	.9900
C17—C16		1.372 (4)	(C4—H4B	0	.9900
C17—C18		1.415 (5)	(С5—Н5А	0	.9900
C16—C15		1.419 (4)	(С5—Н5В	0	.9900
C16—H16		0.9500	(С7—Н7А	0	.9900
C15—C14		1.419 (4)	(С7—Н7В	0	.9900
C15—C11		1.421 (4)	H	B1—F4	1	.364 (5)
C11—C12		1.380 (4)				
C17—O2—C24		116.7 (3)	(C8—C6—C7	1	12.9 (3)
С8—С9—Н9А		120.0	(C3—C6—C7	1	08.0 (3)
С8—С9—Н9В		120.0	(С8—С6—Н6	1	08.2
Н9А—С9—Н9В		120.0	(С3—С6—Н6	1	08.2
C21—C22—C23		110.6 (3)	(С7—С6—Н6	1	08.2
С21—С22—Н22	4	109.5	(C9—C8—C6	1	21.8 (4)
С23—С22—Н224	4	109.5	(С9—С8—Н8	1	19.1
C21—C22—H22H	3	109.5	(С6—С8—Н8	1	19.1
С23—С22—Н221	3	109.5	(C22—C21—C20	1	09.6 (3)
H22A—C22—H2	2B	108.1	(С22—С21—Н21А	1	09.8

C13—N2—C14	117.8 (3)	C20—C21—H21A	109.8
O1—C10—C11	112.5 (2)	C22—C21—H21B	109.8
O1—C10—C1	108.6 (2)	C20—C21—H21B	109.8
C11—C10—C1	108.1 (3)	H21A—C21—H21B	108.2
O1—C10—H10	109.2	N1—C20—C21	115.7 (2)
С11—С10—Н10	109.2	N1—C20—H20A	108.4
C1C10H10	109.2	C21—C20—H20A	108.4
C5—N1—C7	108.5 (2)	N1—C20—H20B	108.4
C5—N1—C20	111.3 (3)	C21—C20—H20B	108.4
C7—N1—C20	109.2 (2)	H20A—C20—H20B	107.4
C5—N1—C1	110.9 (2)	C19—C18—C17	119.9 (3)
C7—N1—C1	107.4 (2)	C19—C18—H18	120.1
C20—N1—C1	109.5 (2)	C17—C18—H18	120.1
O2—C17—C16	124.3 (3)	C18—C19—C14	121.0 (3)
O2—C17—C18	115.1 (3)	C18—C19—H19	119.5
C16—C17—C18	120.6 (3)	C14—C19—H19	119.5
C17—C16—C15	120.6 (3)	N2-C14-C15	122.4 (3)
С17—С16—Н16	119.7	N2-C14-C19	118.4 (3)
С15—С16—Н16	119.7	C15—C14—C19	119.2 (3)
C16—C15—C14	118.7 (3)	N2-C13-C12	124.0 (3)
C16—C15—C11	123.3 (3)	N2-C13-H13	118.0
C14—C15—C11	118.0 (3)	С12—С13—Н13	118.0
C12-C11-C15	118.3 (3)	C11—C12—C13	119.4 (3)
C12-C11-C10	120.9 (3)	C11—C12—H12	120.3
C15-C11-C10	120.7 (3)	C13—C12—H12	120.3
C10-C1-N1	114.5 (3)	C3—C4—C5	109.3 (3)
C10—C1—C2	112.4 (2)	C3—C4—H4A	109.8
N1—C1—C2	108.2 (2)	C5—C4—H4A	109.8
С10—С1—Н1	107.1	C3—C4—H4B	109.8
N1—C1—H1	107.1	C5—C4—H4B	109.8
C2-C1-H1	107.1	H4A—C4—H4B	108.3
C3—C2—C1	110.2 (3)	N1—C5—C4	110.2 (3)
С3—С2—Н2А	109.6	N1—C5—H5A	109.6
C1—C2—H2A	109.6	C4—C5—H5A	109.6
C3—C2—H2B	109.6	N1—C5—H5B	109.6
C1—C2—H2B	109.6	C4—C5—H5B	109.6
H2A—C2—H2B	108.1	H5A—C5—H5B	108.1
C4—C3—C6	108.5 (3)	N1—C7—C6	111.0 (3)
C4—C3—C2	109.4 (3)	N1—C7—H7A	109.4
C6—C3—C2	109.3 (3)	С6—С7—Н7А	109.4
С4—С3—Н3	109.9	N1—C7—H7B	109.4
С6—С3—Н3	109.9	С6—С7—Н7В	109.4
С2—С3—Н3	109.9	H7A—C7—H7B	108.0
C8—C6—C3	111.1 (3)		
C24—O2—C17—C16	1.4 (6)	C7—C6—C8—C9	150.3 (4)
C24—O2—C17—C18	-179.9 (3)	C23—C22—C21—C20	-176.9 (3)
O2-C17-C16-C15	179.7 (4)	C5—N1—C20—C21	66.9 (4)
C18—C17—C16—C15	1.0 (6)	C7—N1—C20—C21	-52.9 (4)
C17—C16—C15—C14	-0.4 (5)	C1—N1—C20—C21	-170.2 (3)

C17—C16—C15—C11	179.2 (3)	C22-C21-C20-N1	-171.6 (3)
C16-C15-C11-C12	-178.6 (3)	O2-C17-C18-C19	-179.4 (4)
C14—C15—C11—C12	1.0 (5)	C16—C17—C18—C19	-0.5 (6)
C16—C15—C11—C10	1.5 (5)	C17—C18—C19—C14	-0.4 (6)
C14—C15—C11—C10	-178.9 (3)	C13—N2—C14—C15	1.4 (5)
O1-C10-C11-C12	-22.6 (4)	C13—N2—C14—C19	179.5 (3)
C1-C10-C11-C12	97.2 (4)	C16—C15—C14—N2	177.6 (3)
O1-C10-C11-C15	157.3 (3)	C11—C15—C14—N2	-2.1 (5)
C1-C10-C11-C15	-82.9 (4)	C16-C15-C14-C19	-0.5 (5)
O1-C10-C1-N1	-78.1 (3)	C11—C15—C14—C19	179.9 (3)
C11-C10-C1-N1	159.6 (2)	C18—C19—C14—N2	-177.2 (4)
O1—C10—C1—C2	45.8 (3)	C18—C19—C14—C15	0.9 (6)
C11—C10—C1—C2	-76.4 (3)	C14—N2—C13—C12	0.2 (6)
C5-N1-C1-C10	62.0 (3)	C15—C11—C12—C13	0.5 (5)
C7—N1—C1—C10	-179.7 (2)	C10-C11-C12-C13	-179.6 (3)
C20-N1-C1-C10	-61.2 (3)	N2-C13-C12-C11	-1.2 (6)
C5—N1—C1—C2	-64.1 (3)	C6—C3—C4—C5	53.4 (3)
C7—N1—C1—C2	54.2 (3)	C2—C3—C4—C5	-65.7 (3)
C20-N1-C1-C2	172.7 (3)	C7—N1—C5—C4	-65.4 (3)
C10-C1-C2-C3	-117.9 (3)	C20—N1—C5—C4	174.4 (3)
N1—C1—C2—C3	9.5 (4)	C1—N1—C5—C4	52.2 (3)
C1—C2—C3—C4	53.0 (4)	C3—C4—C5—N1	11.5 (4)
C1—C2—C3—C6	-65.7 (4)	C5—N1—C7—C6	51.3 (3)
C4—C3—C6—C8	168.6 (3)	C20—N1—C7—C6	172.8 (2)
C2—C3—C6—C8	-72.2 (3)	C1—N1—C7—C6	-68.5 (3)
C4—C3—C6—C7	-67.0 (3)	C8—C6—C7—N1	136.1 (3)
C2—C3—C6—C7	52.2 (4)	C3—C6—C7—N1	12.8 (3)
C3—C6—C8—C9	-88.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O1—H1O···N2 ⁱ	0.84	1.95	2.787 (4)	174.
Symmetry codes: (i) $x-1/2, -y+1/2, -z$.				

